
                                   REAL ANALYSIS
UNIT I

Sec 4 : ORDER IN R:
 O1: LAW OF TRICHOTOMY:
Given any two real numbers a, b, one and only one of the following holds:
a b, a = b, ba.

O2: TRANSITIVITY:
For each triple real numbers  a, b, c, if  
a b, b c , then a  c

O3: MONOTONE PROPERTY FOR ADDITION :
For all real numbers a, b and c,  ab it implies a+c b+c
O4 : MONOTONE PROPERTY FOR MULTIPLICATION :
For all real numbers a,b and c,  ab and 
c 0 it implies ac  bc

SECTION 4.1 : POSITIVE NUMBERS
Definition 4.1 
A real number a is said to be positive if a  0.

THEOREM 4.1. For each real number a one and only one of the following holds:
		a  0,     a =0,       -a  0
PROOF
In view of O1 , it suffice to prove that 
 0  a  ⇔  -a  0.
Now        
            0  a  ⇒ 0 +(-a)  a+(-a) ⇔ -a  0
           -a ⇒ (-a) +a     0 + a ⇒ 0  a

THEOREM 4.2. If a, b , be positive real numbers , then a+b is a positive real number.
PROOF
                  a  0  ⇒ a +b     0+b,   (By O3)
	⇒ a+b   b  0      (Since b 0)
a+b >0

THEOREM 4.3. If  a,b be positive real numbers , then ab is a positive real number.
PROOF
          a  0  and b  0  ⇒  ab  0.b  (By O4)
       But  0.b=0.Therefore , we have ab  0.


SECTION 4.2. 
THE ORDER RELATIONS  
DEFINITION 4.2
A real number a is said to be less than b (written a  b) if  b  a
A real number a is said to be negative if a  0

THEOREM 4.4 .Given any two real numbers a,b, one and exactly one of the following holds:
                           a b,  a=b,  b  a.

THEOREM 4.5. For all  real numbers  a,b and c,
                             a b ⇔ a+c   b+c
                  a   b and c   0  ⇔   ac   bc.
THEOREM 4.6. For each real number a, one and only one of the following holds:
a  0,  a=0,     -a  0.

THEOREM  4.7.  
a  0,  b  0 ⇔ a +b  0 and ab   0.

DEFINITION 4.3:
A real number a is said to be greater than or equal to b (written a  b) if either
 a   b or a=b.
A real number a is said to be less than or equal to b (written a  ) if either 
      a  b or a=b.
The relations    and      are called weak inequalities  and the relations   and    which are called the strict  inequalities.

SECTION 5. ABSOLUTE VALUE
DEFINITION 5.1
If  x be a real number , then its absolute value denoted by   , is defined by the rule
     
We may observe that  is defined for every x ϵ R.
Also x1= x2 ⇒  = .



THEOREM 5.1 .For every x ϵ R.
                   = max {-x, x}.
PROOF
By the law of trichotomy ,one and exactly one of the following is true
                 (i)  x  0,   (ii)  x =0,      (iii). x  0
If    ,then       =x, and x  -x
If   x  ,then       = -x ,  and  -x  x
Thus in either case ,  is the greater of two numbers x and –x , that is 
 = max {-x, x}.

COROLLARY: For every  x ϵ R,   x   
PROOF
             = max {-x, x}  x.

THEOREM 5.2  For every  x ϵ R ,
2   =  x2  = 2
PROOF
By definition ,
       
In either case ,
2   =  x2 .
Also similarly  
2 = (-x)2 = x2 .
Hence  2   =  x2  = 2 .

THEOREM 5.3. For every  x ϵ R,   .
PROOF
 = max {-x, -(-x)},
          = max {-x, x},
           = 

THEOREM 5.4, For all x,y ϵ R ,
 =  . .
PROOF
               2=  (xy)2 ,
                          =  x2 y2,
                                        =  2  2
                          =(  )2 .
Since   =  . are both non negative , therefore taking the positive square roots of both sides ,we have  =  ..



THEOREM 5.5  (THE TRIANGLE INEQUALITY).
Statement:
For all real numbers x and y,   
  ≤  +
PROOF
CASE 1.      x+ y ≥ 0.  In this case
                 = x+y
                Since x ≤   and y≤ , therefore it follows that   ≤  +,
and consequently  ≤  +
CASE 2.    x+y  0. In this case
                 -(x+y) 0, that is (-x)+(-y)  0.
      Now        =  ,    
                                  =   
                                  ≤  +
     Since  = , = , therefore it follows that   ≤  +.

THEOREM 5.6 .
For all real numbers x and y ,
 .
PROOF 
By the triangle inequality ,we have 
                =   
                     ≤  +
So that   -   ≤            ---------(1)
 =   
                    ≤  +
So that    -   ≤   
i.e        -(  -  ) ≤ , 
since            --------(2)
   Now    = max{, -(  )}
                                  ≤  ,  by (1) and (2)

EXAMPLE 1
If x , y be any real numbers , show that 
2 + 2  =  2(2 + 2 ).
SOLUTION
2 + 2 =   (x+y)2 +  (x-y)2
                                 = 2 (x2 +y 2),
                                 = 2(2 +2 )




EXAMPLE 2:
If   x, l,    be real numbers,  and     0, show that 
 ⇔     l- <l+ 
SOLUTION
 ⇔ max {(x-l),  -(x-l)} < ,
                      ⇔   x-l <  and  l-x < 
                      ⇔   x<l+   and   l- <x
                       ⇔    l- <l+ 

SECTION 6
COMPLETENESS
DEFINITION  6.1.
If  for a set S of real numbers , there exists a real number  u, such that 
                                 X S  ⇒  x ≤  u,   
then u is called an upper bound of S .If there exists an upper bound for a set S , then S is said to be  bounded above.

ILLUSTRATIONS:
1. The set of negative real numbers is bounded above ,0 being an upper bound.
2. The set of positive real numbers is not bounded above . For , if we assume that the set R+ of positive real numbers is bounded above ,and that u is an upper bound ,then we are immediately led to a contradiction by observing that 
(i) since 1 R+ , therefore ,1≤ u, which means u>0.
(ii) u+1 >0 and consequently 
      u+1  R+ ;
(iii)  u < u+1, so that there is an x in R+ , namely u+1 , which does not satisfy  x ≤ u 
(iv) since u is assumed to be an uppr bound R+ ,therefore ,we should have x ≤ u for all x in R+.
From illustrations 2 above , we find that it is not necessary that a set should be bounded above. However , if a set has one upper bound , then it has many upper bounds . For , if u be an upper bound of a set S, then every real number u’ greater than u is also an upper bound of S.

DEFINITION 6.2.
If the set of all upper bounds of a set S of real numbers has a smallest member , say w, then w is said to be a least upper bound or a supremum of S (written sup S).
It can be easily seen that a set cannot have more than one supremum. In fact , if  w, w’ be two suprema of a set S , then 
( i)  w and w’ are both upper bounds of S ;
( ii) since w is a supremum of S and w’ is an upper bound of S , therefore , w ≤ w’. that is

 ,    w w’;
(iii)  since w’ is a supremum of S and w is an upper bound of S ,therefore , 

            w’≤ w, that is w’ w:

(iv) by the law of trichotomy w w’ and 

w’ w together imply w=w’.

ORDER COMPLETENESSS PROPERTY
   Every non empty set of real numbers which is bounded above has a supremum.

THEOREM 6.1
ARCHIMEDEAN PROPERTY OF REAL NUMBERS
Statement
If x and y be any positive real numbers , then 
  there exists a positive integer n such that 
ny >x.
PROOF
( i) Suppose the statement of the theorem is false. 
( ii) Then , for each positive integer n , we must ny ≤ x.
(iii) This means that x is an upper bound of the set 
             S = {y, 2y, 3y,….}
(iv) By the completeness property of R , S must have a supremum, say ‘s’.
(v) Then ,ny ≤ s for all positive integers n, and consequently (n+1)y ≤ s for all positive integers n.
(vi) This implies that ny ≤ s-y for all positive integers n, so that s-y is an upper bound of S .
(vii) Thus , we have an upper bound of S , namely s-y , which is less than the supremum of S .
(viii) Since this contradicts the definition of s , therefore , the statement of the theorem must be true.

COROLLARIES. 
 1.If x be any real number , then there exists a positive integer n such that n > x.


PROOF
Take y=1 in the proof of the theorem.

2. If x be any real number , and y be any positive real number , then there exists a positive integer n such that  ny > x.
PROOF
If x >0 , the corollary is a re statement of theorem 6.1. If  x ≤ 0, then n=1 suffices .
For    ,         1.y =y >0 ≥ x.

3. If x be any real number , then there exists a positive integer n such that n>x.
PROOF
Take y=1 in corollary 2.

THEOREM 6.2.
CHARACTERISATION OF THE SUPREMUM OF A SET 
STATEMENT:
Let S be a non empty set of real numbers bounded above. Then a real number s is the supremum of S iff the following two conditions hold:
( i)    x ≤ s  for all  x S.
( ii)     For each positive real number  , there is a real number x  S  that  x> s-.
PROOF
*The conditions are necessary.
*In fact , since s is the supremum of S ,therefore , for all x S, we must have x ≤ s.
*Also , if x be any positive number whatever , then   s- cannot be an upper bound of S
 (for it is less than the supremum) and therefore , for some x S , we must have  
x > s- .
*The conditions are sufficient as well.
*Suppose there exists a real number s’ satisfying the conditions (i) and (ii).
*By (i) it follows that s is an upper bound of S *Also if s’ is any real number less than s , then  s-s’ >0.
*Letting   = s- s’, we find by (ii) that there exist an     x  S such that  x>  s-  , 
(i.e)  x >s’,  showing that s’ is not an upper bound of S .
*Thus we find that s is an upper bound of S and any number less than s is not an upper bound of S .
*H ence s is the supremum of S.
SECTION 6.1
LOWER BOUNDS
DEFINITION 6.3
If for a set S of real numbers , there exists a real number v such that   
                   x  S ⇒  x ≥  v,
then v is called a lower bound of S . If there exists a lower bound for the set S , then S is said to be bounded below.

ILLUSTRATIONS
1.The set of positive real numbers is bounded below , 0 being a lower bound .
2.The set of negative real numbers is not bounded below 
From illustration 2 above , we find that it is not necessary that a set should be bounded below .However , if a set has one lower bound , then it has many lower bounds . For , if v be a lower bound of a set S , then every real number v’ less than v is also a lower bound of S.

DEFINITION 6.4
If the set of all lower bounds of a set S of real numbers has a greatest member , say t, then t is said to be a greatest lower bound or an infimum of S ( written inf S).

THEOREM 6.3
Any non empty set of real numbers which is bounded below has an infimum.
PROOF
*Let S be any non empty set of real numbers and let v be a lower bound of S.
*Let us denote by T the set of non negatives of members of S.
*That is ,         T = { -x : x S }.
*We shall show that T is bounded above .
*In fact, if y be an arbitrary member of T , then  y = -x for some x S.
*Since v is a lower bound of S , therefore , it follows that x ≥ v, and consequently  y≤ -v.
*Since  y≤ -v  for all y T ,therefore T is bounded above , -v being an upper bound .
*By the completeness property , T has a supremum , say  t.
*It can be shown that  -t is the infimum of S.
*This is equivalent to showing that if w be any lower bound of S , then  -t ≥ w.
*Now , w is a lower bound of S ⇒ -w is an upper bound of T ⇒ t ≤ -w ⇒ -t ≥ w.
*Hence the theorem.

THEOREM 6.4 
CHARACTERISATION OF THE INFIMUM OF A SET
STATEMENT
Let S be a non empty set of real numbers bounded below. Then a real number t is the infimum of S iff the following two conditions hold:
( i)    x ≥ t  for all  x S.
( ii)     For each positive real number  , there is a real number x  S  that  x<  t +.
PROOF
*The conditions are necessary.
*In fact , since t is the infimum of S ,therefore , for all x S, we must have x ≥ t.
*Also , if   > 0 be given , then t + is greater than the infimum of S and cannot therefore , be a lower bound of S.
  *This implies that  , for some x S , we must have  x < t+.
*The conditions are sufficient as well.
*Suppose there exists a real number t’ satisfying the conditions (i) and (ii).
*By (i) it follows that t is a lower bound of S *Also if t’ is any real number greater than t , then  t – t’> 0.
*Letting   = t’ -t, we find by (ii) that there exist an     x  S such that  x<  t + , 
(i.e)  x < t’,  showing that t’ is not an lower bound of S .
*Thus we find that t is a lower bound of S and no number greater than t is not a lower bound of S .
*H ence t is the infimum of S.

SECTION 10 
COUNTABLE AND UNCOUNTABLE SETS
DEFINITION 10.1
A set S is said to be finite if either it is empty , or for some natural number n, there exists a one to one mapping from the set {1,2,….n} onto the set S. If a set is not finite , then it is said to be infinite.

ILLUSTRATIONS
1.The set  is a finite set.
2.The set  {e, ,  } is a finite set, because their exist several one to one mappings from the set {1,2,3} onto the set {e, ,  } ,one such mapping being  1→ e, 2→ , 3→
3.The set of all primes less than 10100 is a finite set.
4.The set of all human beings in the world at a particular instant is a finite set.
5.The set of all natural numbers is an infinite set.
6.The set of all rational numbers is an infinite set.
7.The set { x: x R and and 0 ≤ x ≤ 1} is an infinite set.

THEOREM 10.1
(a)Every subset of a finite set is a finite set.
(b)Every superset of an infinite set is an infinite set.
(c)The intersection of every non empty family of finite sets is a finite set.
(d)The union of every non empty family of infinite sets is an infinite set.

DEFINITION 10.2
     A set S is said to be enumerable, if there exists a one to one mapping from the set N of all natural numbers onto the set S.
    
     A set S is said to be countable if it is either finite or enumerable. If a set is not countable, then it is said to be uncountable.

ILLUSTRATIONS
1.The set N of all natural numbers is enumerable , the identify mapping being a desired one-to-one mapping.
2.The empty set is countable.
3.The set {4, -7, e,  } is a countable set.
4.The set Z of al  integers is a countable set. For , by rearranging the integers , we may write Z as  { 0, -1, 1, -2, 2, -3, 3…..} .Let now  f be a function from N to Z , defined by
          f(n) =  (n-1), for  n= 1,3, 5,….
           f(n) =   n ,  for  n=  2,4,6,…
It can be easily seen that f is univalent as well as onto.

THEOREM 10.2
Every subset of a countable set is countable.
PROOF
*Let A be a countable set and let B be a subset of A .
*If B is finite , we have nothing to prove .
*We may , therefore , assume without loss of generality that A is an infinite countable set and that B is an infinite subset of A.
*Let  A = { a1 ,a2 ,a3,… }. 
*Each element of B is an a1,  for some index 
1.
*Let n1 be the smallest index for which 
  B.
*Consider now the set  A  {.
*Let n2 be the smallest index for which  belongs to B as well as to A  {.’
*Consider now the set A  {. 
*Let n3 be the smallest index for which  belongs to B as well as to A  {.
*Proceeding in this manner , we find that  
B = { . 
*Then k→ is a one to one function from N onto B , and consequently B is countable.

THEOREM 10.3
Every superset of an set uncountable set is uncountable.
PROOF
*This theorem is simply the dual of theorem 10.2.
*Let A be an uncountable set and let B  ⊃ A .
* If B is countable , then the set A must also be countable  (For , it is a subset of the countable set B ).
*Since A is given to be uncountable , it follows B must also be uncountable.


THEOREM 10.4
If A1, A2,… are countable sets , then  is countable.
PROOF
*Let us write 
  A1= {a11, a12, a13, a14,  …..},
  A2= {a21, a22, a23, a24,  …..},
  A3= {a31, a32, a33, a34,  …..},
   .          .       .      .     .
   .          .       .      .     .
   .          .       .      .     .
  An= {an1, an2, an3, an4,  …..},
    .          .       .      .     .
    .          .       .      .     .
    .          .       .      .     .
*Here aij stands for the jth element of the ith set as listed above.
*Let us define the height of the element aij, to be  i+j.
*With this definition , the height of a11, is 2, and this is the only element of height 2.
*Similarly , the height of each of the elements a12 and a21 is 3 and these are the only elements of height 3.
*Similar observations can be made about other elements .
*Since each element will have a unique height therefore , we can arrange the elements according to their heights as 
a11, a12, a21, a31, a22, a13,…… leaving out any element that has already occurred.
*Thus all elements will be counted out and consequently  is countable.
*The following diagram gives a visual picture of the above counting process.
a11               a12                 a13               a14      ……

a21                       a22           a23            a24     ……

a31                a32               a33             a34      ……

a41                 a42          a43            a44       ……

…                  …           …             …        …..

   According to this scheme , the element are to be counted as 
a11, a12, a21, a31, a22, a13, a14, a23, a32, a41,……

THEOREM 10.5
The set   N N is countable.
PROOF
We may arrange the set N N as shown in fig

(1,1)             (1,2)             (1,3)                (1,4)     ……

(2,1)                 (2,2)         (2,3)          (2,4)    ……

(3,1)              (3,2)           (3,3)          (3,4)   ……

(4,1)             (4,2)         (4,3)          (4,4)   ……

…                  …           …             …        …..
This scheme arranges all the elements of
N N into a sequence and consequently shows that N N  is countable.

CORALLARIES
1.The set of all positive rational numbers is countable.
PROOF
*Every positive rational number is expressible as  p/q, where  p and q are positive integers prime to each other.
*Let us denote the set of all positive rational numbers by A and let B be the set defined as
     B = {(p,q) :  (p,q) N N ,  p and q are prime to each other}
*It is obvious that the elements of A and B are in one to one correspondence , and therefore , A is countable if and only if B is countable.
*Since the set B is a subset of the countable set N N , therefore , it is countable.
*Hence A is countable.

2.The set of all negative rational numbers is countable.
PROOF
*The set C of all negative rational numbers can be put in one to one correspondence with the set A of all positive rational numbers.
*Since A is countable , therefore , C must be countable.


3. The set Q of all rational numbers is countable.
PROOF
*The set Q is the union of three countable sets A, C and {0}.        
(since corollaries 1 and 2).

   The above corollary can also be proved as a direct consequence of theorem 10.4.
PROOF
*For each natural number n , let
   An =  .
*Then it can be easily seen that An  is countable.
*Now  is a countable union of countable sets , and therefore , by theorem 10.4 it is countable.
*But this union is precisely the set of all rational numbers.
*Hence the set of all rational numbers is countable.

4. The set of all rational numbers in [0,1] is countable.
PROOF
*The set of all rational numbers in [0,1]is a subset of the set of rational numbers which is countable.
*Therefore , by theorem 10.2.,the set of all rational numbers in [0,1] is countable.
*We shall now prove an important result which says that the set of all real numbers is uncountable.
*In view of theorem 10.3, it is enough to show that the set [0,1] of all real  is uncountable.
*For this purpose we shall assume that every real number x can be expressed in decimal form as 
             x= a0 . a1 a2 a3 ….,
               = a0 + 
where , a0 is an integer , and a1 , a2 ,  … are all integers such that 0≤ ai ≤ 9 , for all i.
*This expression for a real number is unique except when the real number is a rational number of the form   , where p is an integer and m and n take any of the value  
0, 1, 2, 3,…..
*In such a case , two decimal expansions are possible .
*For example, we may express   either as   0.5000…  or  as  0.4999…
*Conversely , every decimal of the form  
 a0 . a1 a2 a3…. Are all integers  , a1 ,a2 ,a3….  are all  integers such that  0≤ ai ≤ 9 , for all i, is the decimal expansion of some real number.

THEOREM 10.6.
The set [0,1] is countable.
PROOF
*We are now ready to show that the set [0,1] is uncountable.
*Suppose that [0,1] is countable.
*Then there exists a one to one mapping from N onto [0,1].
*This means that if this mapping be f, then the set [0,1[ can be written as 
                         { f(1), f(2),f(3),….f(n),…}.
*Expressing each f(n) as a decimal , we have 
                     f(1) = 0. a11 a21 a31….,
                     f(2) = 0. a12 a22 a32….,
                     f(3) = 0. a13 a23 a33….,
                     ………………………,
                    f(n) = 0. a1n a2n a3n….,
                    ……………………….
all the  aij  s being integers belonging to the set {0,1,2,3,…..9}.
*Let us choose for each n  N, Aa positive integer bn as follows :
               bn   = 1  if ann 1,
               bn = 2   if ann =1.
*That is , if a11=1,we choose b1=2 and if 
a11  1, we choose b1=1, and like wise for 
b2 ,   b3 ,…..
*This choice means that for each n, bn ann
*Let  now       y =  0.  b1 b2 b3…..
*Now y is a real number in [0,1].
*Also , it is not in the set {f(1),f(2),….}.
*Infact , it differs from f(1) in the first decimal place because b1 a11 , it differs from f(2) in the second decimal place ,….it differs  from f(n) in the nth decimal place,….
*Also , the decimal expansion of y is unique , since no bn is equal to 0 or 9.
*This means that  y f(n) for any n .
*We have thus found a real number y which is in [0,1], but which is not in {f(1),f(2),,…f(n),…}.
*This contradicts the assumption that the set [0,1] is countable.
*Hence the set [0,1] is countable.

COROLLARIES 
1.The set of real numbers is uncountable.
2.The set of irrational numbers is uncountable.
PROOF
*Let S be the set of irrational numbers.
*If S be countable, then the set SQ  (where Q is the set of rational numbers) will be countable.
*S U Q= R and since the set R is uncountable , therefore , we have a contradiction.
*Hence the set S is uncountable.

THEOREM 10.7
Let Pn be the set of polynomial functions f of degree n defined by relations of the form
    f(x) = a0xn + a0xn-1+….+an,
where n is a fixed non negative integer , the coefficients a0 a1……. an are all integers and a00.The set Pn is countable.
PROOF
*We shall prove the result by induction on n, the degree of f.
*The result is true for n=0.
*For, the set of all polynomials of degree zero is one to one correspondence with the set Z{0} of a non zero integers and is, therefore , countable.
*Let us now assume that the set Pk is countable for some fixed positive integer k.
*For each positive integer m, let
             Sm= {f: f=mxk+1+g, g Pk}
            S-m= {f: f= -mxk+1+g, g Pk}
*The sets Sm and S-m are both countable , each being in one to one correspondence with the countable set Pk.
*Since the union of two countable sets is countable , therefore ,the set Tm= Sm S-m is countable.
*Again , since the union of two countable family of countable sets is countable, therefore ,  is countable.
*Since Pk+1=, therefore Pk+1 is countable.

COROLLARY
The set P of polynomial functions with integer coefficients is countable.
PROOF
*If Pn be the set of polynomial functions of a degree n with integral coefficients , then Pn is countable.
*Since P =  ,and since the union of countably many countable sets is countable;therefore , it follows that P is countable.



REMARK
(1) For each fixed non negative integer n , the set Qn of polynomial functions of the form 
               a0xn + a0xn-1+….+an,
      where a0 a1……. an are rational numbers         
      and    a0 0, is countable.
(2)If Qn be as in (1) above , then 
            is countable.

DEFINITION10.3.
A real number is said to be algebraic if it is the root of some polynomial equation with rational coefficients.

THEOREM 10.8.
The set of algebraic numbers is countable.
PROOF
*Let n be an arbitrary but fixed positive integer .
*The set Qn is countable.
*We may , therefore , write it as 
{fn1, fn2,….}, where each fnk, is a polynomial of degree n with rational coefficients.
*If Ank denotes the set of real roots of the equation fnk=0, then Ank is a countable set (in fact , it is a set consisting of atmost n elements).
*Let       = An.
*The set An is clearly the set of all those algebraic numbers which are yhe roots of polynomial equations of degree n with rational coefficients .
*Since the union of a countable family of countable sets is countable, therefore, An is countable.
*Let us now write = A.
*A is clearly the set of algebraic numbers .
*Since A is the union of a countable family of countable sets , and since the union of every countable family of countable sets is countable, therefore , A is countable.
*Hence the set of algebraic numbers is countable.

DEFINITION 10.4
A real number is said to be transcendental if it is not algebraic.


THEOREM 10.9
The set of transcendental numbers is uncountable.
PROOF
*Let T be the set of transcendental numbers and let A be the set of algebraic numbers.
*If T be countable , then the set T A  will be countable .
*Since , by , definition , T A=R, and R is known to be uncountable, therefore , we have a contradiction .
*Hence the set T must be uncountable.





NEIGHBOURHOODS
DEFINITION 2.1 (a)
A set N ⊂ R  is said to be a neighbourhood of a point p R if there exists an Є >0 such that ( p- Є, p+ Є) ⊂ N .

DEFINITION 2.1(b)
A set N ⊂ R is said  to be a neighbourhood of a point p Є R if there exists an open interval (a,b)containing p and contained in N.

ILLUSTRATIONS
1.The open intervals (a,b) is a neighbourhood of each of its points.
2.R is a neighbourhood of each of its points.
3.G= (1,2) (3,4) is a neighbourhood of each of its points.
4.The closed interval [a,b] is a neighbourhood of each point of (a,b) but is not a neighbourhood of the end points a and b.
5.The set Z of integers is not a neighbourhood of any of its points.It is obvious from the definition , that each point of R has at least one neighbourhood (R is a neighbourhood of each of its points )and that if N be a neighbourhood of a point p, then 
p N.

DEFINITION 2.2
If N is a neighbourhood of p , then we say that p is an interior point of N.



THEOREM 2.1
If M and N are neighbourhood of a point p, then M N is also a neighbourhood of p.
PROOF
*Since M and N are neighbourhoods of p , therefore , there exists Є1>0 and Є2>0 such that       [p- Є1,p+ Є1) ⊂ M 
              [p- Є2,p+ Є2) ⊂ N.
 and 
If Є = min { Є1, Є2} , then 
            (p- Є,p+ Є) ⊂( p- Є1,p+ Є1) ⊂M
            (p- Є,p+ Є) ⊂( p- Є2,p+ Є2) ⊂N
So that (p- Є,p+ Є)  ⊂ M N
and consequently M N is a neighbourhood of p.

THEOREM 2.2
If M is a neighbourhood of a point p, and
 N⊃ M , then N is also a neighbourhood of p.
PROOF
*Since M is a neighbourhood of p, therefore , for some Є>0 , we must have 
(p- Є,p+ Є) ⊂M.
Since M ⊂N, therefore , it follows from above that ,
and consequently N is also a neighbourhood of p. (p- Є,p+ Є)  ⊂N
 
OPEN SETS
DEFINITION 3.1(a).
A set of G ⊂ R is said to be open if it is a neighbourhood of each of its points.
DEFINITION 3.1(b)
A set G ⊂R is said to be open if for each p G, there exists Є>0 such that  (p- Є,p+ Є)  ⊂G.

ILLUSTRATIONS
1.Every open interval (a,b) is an open set.
2.The interval [a,b) is not an open  set; for it is not a neighbourhood of a.
3.The interval (a,b] is not an open set.
4.The closed interval [a,b] is not an open set.
5.R is an open set .For, if x be any point of R, then the open interval (x-1,x+1) ⊂ R and consequently R is a neighbourhood of x.Since x is any point of R , therefore ,R is a neighbourhood of each of its points.By definition 3.1(a) , it follows that R is an open set .
6. is an open set .For , there is no point at all in , and consequently there is no point in, of which it is not a neighbourhood .This shows that  satisfies the condition of definition 3.1(a) trivially. Thus  is open.
7.The set (1,2) (3,4) is open.
8.The open rays (a,) and (-, a) are open sets.
9.The closed rays [a,) and (-, a] are not open sets.

THEOREM 3.1
The union of an arbitrary family of open sets is open.
PROOF
*Let F be the union of an arbitrary family ℱ of open sets in R. To show that F is an open set , consider any p F.
*Since F is the union of members of ℱ , therefore , there must exist its an open set H⊂F such that p H⊂F .
*Since H is an open set and p H , therefore ,there must exist Є>0  such that 
(p- Є,p+ Є)  ⊂ H⊂F .
*Again since [p- Є, p+ Є) is contained in F , therefore , F is a neighbourhood of p .
*Since p is any point of F , therefore , it follows that F is a neighbourhood of each of its points, and consequently , F is an open set.



THEOREM 3.2
The intersection of two open sets is open 
PROOF
*Let G ⊂ R and H ⊂ R be two open sets .
*If G H =, then it is open.
*If G H , let p be any point of G H.
*Now p G H p  G and p H,
                              G and H are neighbourhood of p,
                              G H is a neighbourhood of p.
*Since p is any point of G H , therefore , it follows that G H is a neighbourhood of each of its points, and consequently , G H is an open set.

CLOSED SETS
DEFINITION 4.1.
A set F⊂R is said to be closed if its complement (that is ,RF ) is open.

ILLUSTRATIONS
1.Every closed interval [a,b] is a closed set.For, if F=[a,b], then 
RF =(-,a)  (b,).Now each of the rays 
(-,a) and  (b,) is an open set ,and consequently their union is an open set.Since RF is an open set , therefore , F is a closed set.
2.The open interval (a,b) is not a closed set.For , if  F = (a,b) , then 
RF= (-,a)  (b,).Now RF is not an open set because a is a point of  RF but RF is not a neighbourhood of a .Since RF is not open, therefore ,F is not a closed set.
3.Neither of the intervals [a,b) and (a,b] is a closed set .
4.The empty set  is a closed set . For 
R =R is an open set.
5.R is a closed set because its complement , namely  is an open set .
6.The set [1,2] [3,4] is a closed set.
7.The closed ray (-,a] is a closed set because its complement namely (a,) is an open set.
8.The closed ray [a, is a closed set because its complement namely (-,a) is an open set.
9.The open rays (,a) and  (a,) are not closed sets.


THEOREM4.1
The intersection H of an arbitrary family  of closed sets is a closed set.
PROOF
*Let *={ RF : F}.
*By De Morgan’s rule , RH is the union of the complement of members of  , that is , RH is the union of members of *.
*Since each member of *is an open set , therefore , it follows that RH is an open set , and consequently , H is a closed set.

THEOREM:4.2
The union of two closed sets is a closed set.
PROOF
*Let P⊂ R and Q⊂R be two closed sets, and let F=PQ .
*Then RF=R(PQ)=( RP)( RQ).
*Since P and Q are closed sets , therefore , RP and RQ are open sets .
*Since the intersection of two open sets is an open set, therefore, ( RP)( RQ) is an open set , that is , RF is an open set , and consequently , F is a closed set.

LIMIT POINT OF A SET
DEFINITION 5.1(a).
A point p R is said to be a limit point (or an accumulation point) of a set S⊂R if every neighbourhood of p contains a point of S different from p.
       In symbols , the above definition means that a point p is a limit point of S⊂R iff for each neighbourhood N of p,
      (NS){p}.

DEFINITION 5.1(b).
A point pR is said to be a limit point (or accumulation point) of a set S⊂R if for each Є>0 , the open interval (p- Є,p+ Є) contains a point of S other than p.

DEFINITION 5.2
The set of all limit points of a set S⊂R is called the derived set of S and is denoted by S'.

ILLUSTRATIONS
1.Every real number is a limit point of the set Q of all rational numbers.For ,if p be any real number whatever ,and Є>0 be given than (p- Є,p+ Є) contains infinitely many rational numbers and consequently , it contains at least one point of Q other than p.
Hence p is a limit point of Q .The derived set of Q is , therefore , R.
2.Every point of [0,1] is a limit point of the open interval (0,1).
3.The set of Z of integers has no limit point.
4.A finite set has no limit point.

EXISTENCE OF LIMIT POINTS OF A SET
THEOREM 5.1
BOLZANO – WEIERSTRASS THEOREM
Statement
Every infinite bounded set of real numbers has a limit point.
PROOF
*Let S be an infinite bounded set, and let k and k' be its infimum and supremum respectively.
*Let H be the set of real numbers having the following property : x in H iff it exceeds only a finite number of members of S.
*The set H is clearly non empty for k H .
*Also , H is bounded above , for no number greater than k' belongs to H .
*By the completeness property , H must have a supremum , say p.
*We shall show that p is a limit point of S.
*Let Є>0 be given.
*Since p is the supremum of H , therefore , there exist a member q of H such that q>p- Є
*Since qH , therefore , it exceeds only a finite number of members of S , and consequently , p- Є also exceeds only a finite number of members of S.
*Also , since p is the supremum of H , therefore, p+ Є must exceed infinitely many members of S .
*Now p- Є exceeds only finitely many members of S and p+ Є exceeds infinitely many members of S.
*This means that (p- Є,p+ Є) contains infinitely many members of S , and consequently p must be a limit point of S.
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